Chi Square Answer sheet for Crosses 1-15
 By Sooji (Katie) Jo and Jennifer Liang

Table 1: Cross 1: Dihybrid between purple (bluered) male and WT female

Step 3 Analysis

	-	-
RFP	RFP/-	RFP/-
-	$-/-$	$-/-$

Red 1/2
Non red 1/2

	-	-
BFP	$\mathrm{BFP} /-$	$\mathrm{BFP} /-$
-	$-/-$	$-/-$

Blue 1/2
Non blue 1/2

Grey $1 / 2 * 1 / 2 * 20=5$
Purple $1 / 2 * 1 / 2 * 20=5$
Blue $1 / 2 * 1 / 2 * 20=5$
Red $1 / 2 * 1 / 2 * 20=5$

Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed Number, o	Expected Number, e	$\mathrm{d}=(\mathrm{o}-\mathrm{e})$	d^{2}	$\mathrm{~d}^{2} / \mathrm{e}$
Grey	2	5	-3	9	1.8
Purple	5	5	0	0	0
Blue	4	5	-1	1	0.2
Red	9	5	4	16	3.2
Total	20	20			3.2

(7) $\mathrm{X}^{2}=$ the sum of all of the numbers in column $6=3.2$
(8) Degrees of freedom (df) $=n-1=3$

Conclusion:

(9) P-value and conclusion about your hypothesis: $0.1<\mathrm{p}<0.5$

Table 2: Cross 2: Monohybrid between red female and red male

Step 3 Analysis

	Red	-
Red	R/R	R/-
-	$\mathrm{R} /-$	$-/-$

Red 3/4 *27 (Total observed number) $=20.25=20$
Not red $1 / 4 * 27=6.75=7$

Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed Number, o	Expected Number, e	$\mathrm{d}=(\mathrm{o}-\mathrm{e})$	d^{2}	$\mathrm{~d}^{2} / \mathrm{e}$
Red	25	20	5	25	1.25
Grey	2	7	-5	25	3.57
Total	27	27			4.82

(7) $\mathrm{X}^{2}=$ the sum of all of the numbers in column $6=4.82$
(8) Degrees of freedom (df) $=\mathrm{n}-1=1$

Conclusion:

(9) P-value and conclusion about your hypothesis:

$$
0.03<\mathrm{P}<0.02
$$

Table 3: Cross 3: Monohybrid between red female and WT male

Step 3 analysis

	-	-
Red	$\mathrm{R} /-$	$-/-$
-	$\mathrm{R} /-$	$-/-$

Not red: 1/2*24 = 12

Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed Number, o	Expected Number, e	$\mathrm{d}=(\mathrm{o}-\mathrm{e})$	d^{2}	$\mathrm{~d}^{2} / \mathrm{e}$
Red	14	12	2	4	0.33
Grey	10	12	-2	4	0.33
Total	24	24	0		0.66

(7) $\mathrm{X}^{2}=$ the sum of all of the numbers in column $6=0.66$
(8) Degrees of freedom (df) $=\mathrm{n}-1=1$

Conclusion:

(9) P-value and conclusion about your hypothesis: $0.4<\mathrm{P}<0.5$

Table 4: Cross 4: Dihybrid between nonstriped, red female and striped, red male

Step 3 analysis

	RFP	RFP
RFP	R/R	R/R
RFP	R/R	R/R

Red: 1

	Stripe	Stripe
Spot	$\mathrm{Sp} / \mathrm{St}$	$\mathrm{Sp} / \mathrm{St}$
Spot	$\mathrm{Sp} / \mathrm{St}$	$\mathrm{Sp} / \mathrm{St}$

Red/striped 1*1*25 $=25$
Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed Number, o	Expected Number, e	$\mathrm{d}=(\mathrm{o}-\mathrm{e})$	d^{2}	$\mathrm{~d}^{2} / \mathrm{e}$
Red/Striped	25	25	0	0	0
				0	0
Total	25	25			

(7) $\mathrm{X}^{2}=$ the sum of all of the numbers in column $6=0$
(8) Degrees of freedom (df) $=n-1=0$

Conclusion:

(9) P-value and conclusion about your hypothesis: Cannot do Chi-square analysis when $\mathrm{df}=0$

Table 5: Cross 5: Dihybrid between red female and yellow male

Step 3 Analysis

	-	-
RFP	R/-	R/-
-	$-/-$	$-/-$

	-	-
YFP	Y/-	Y/-
YFP	Y/-	Y/-

Yellow 1

Orange: $1 / 2 * 1 * 19=9.5$
Yellow $1 / 2 * 1 * 19=9.5$

Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed Number, o	Expected Number, e	$\mathrm{d}=(\mathrm{o}-\mathrm{e})$	d^{2}	$\mathrm{~d}^{2} / \mathrm{e}$
Yellow	9	10	1	1	0.1
Orange	10	10	0	0	0
					0.1
Total	19	19			

(7) $\mathrm{X}^{2}=$ the sum of all of the numbers in column $6=0.1$
(8) Degrees of freedom (df) $=\mathrm{n}-1=1$

Conclusion:

(9) P-value and conclusion about your hypothesis:

$$
0.7<\mathrm{P}<0.8
$$

Table 6: Cross 6: Dihybrid between red female and yellow male

Step 3 Analysis

	-	-
RFP	R/-	R/-
RFP	R/-	R/-

	-	-
YFP	Y/-	Y/-
-	$-/-$	$-/-$

Yellow 1/2
Grey 1/2

Orange $1 * 1 / 2 * 9=4.5$
Red 1*1/2*9=4.5
Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed Number, o	Expected Number, e	$\mathrm{d}=(\mathrm{o}-\mathrm{e})$	d^{2}	$\mathrm{~d}^{2} / \mathrm{e}$
Red	5	5	0	0	0
Orange	4	5	1	0.20	0.04
Total	9	10			0.04

(7) $\mathrm{X}^{2}=$ the sum of all of the numbers in column $6=0.04$
(8) Degrees of freedom (df) $=n-1=1$

Conclusion:

(9) P-value and conclusion about your hypothesis: $0.8<\mathrm{P}<0.9$

Table 7: Cross 7: Dihybrid between a purple female and purple male

Step 3 analysis

	PFP	-
PFP	P/P	P/-
-	P/-	$-/-$

Purple: 3/4
Grey: 1/4

	gol	+
gol	$\mathrm{gol} / \mathrm{gol}$	$\mathrm{gol} /+$
+	$\mathrm{gol} / \mathrm{+}$	$+/+$

No pigment: 3/4
Pigment: 1/4

Purple, pigment
Purple, no pigment
Grey, pigment
Grey, no pigment
$3 / 4 * 3 / 4 * 13=7.3125$
$3 / 4 * 1 / 4 * 13=2.4375$
$1 / 4 * 3 / 4 * 13=2.4375$
$1 / 4 * 1 / 4 * 13=0.8125$

Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed Number, o	Expected Number, e	$\mathrm{d}=(\mathrm{o}-\mathrm{e})$	d^{2}	$\mathrm{~d}^{2} / \mathrm{e}$
Purple, pigment	9	7	2	4	0.57
Grey, pigment	2	1	1	1	1.00
Purple, no pigment	1	2	-1	1	0.50
Grey, no pigment	1	2	-1	1	0.50
Total	13	12			2.57

(7) $\mathrm{X}^{2}=$ the sum of all of the numbers in column $6=2.57$
(8) Degrees of freedom (df) $=\mathrm{n}-1=3$

Conclusion:

(9) P-value and conclusion about your hypothesis: $0.4<\mathrm{P}<0.5$

Table 8: Cross 8: Trihybrid between red male and purple male

	Red	-
Red	R/R	R/-
-	$\mathrm{R} /-$	$-/-$

Red: 3/4
Not red: 1/4

	-	-
PFP	P/-	P/-
-	$-/-$	$-/-$

Purple: 2/4
Not purple: 2/4

	gol	+
gol	gol $/ \mathrm{gol}$	gol/ $/+$
+	gol/ +	$+/+$

Red purple, pigment
Red purple, no pigment
Red not purple, pigment
Red not purple, no pigment
Pigment: 3/4
No pigment: 1/4
$3 / 4 * 2 / 4 * 3 / 4 * 17=4.78$
$3 / 4 * 2 / 4 * 1 / 4 * 17=1.59$
$3 / 4 * 2 / 4 * 3 / 4 * 17=4.78$
$3 / 4 * 2 / 4 * 1 / 4 * 17=1.59$
Not red, purple, pigment
Not red, purple, no pigment
Not red, not purple, pigment
$1 / 4 * 2 / 4 * 3 / 4 * 17=1.59$
$1 / 4 * 2 / 4 * 1 / 4 * 17=0.53$
$1 / 4 * 2 / 4 * 3 / 4 * 17=1.59$
Not red, not purple, no pigment $1 / 4 * 2 / 4 * 1 / 4 * 17=0.53$
Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed Number, o	Expected Number, e	$\mathrm{d}=(\mathrm{o}-\mathrm{e})$	d^{2}	$\mathrm{~d}^{2} / \mathrm{e}$
Purple, pigment	2	2	0	0	0
Grey, pigment	1	2	-1	1	0.50
Red, pigment	5	5	0	0	0
Red purple, pigment	3	5	2	4	0.80
Grey, no pigment	2	1	1	1	1.00
Red, no pigment	2	2	0	0	0
Red purple, no	2	2	0	0	0
pigment					
Purple, no pigment	0	1	-1	1	1.00
Total	17				3.30

(7) $\mathrm{X}^{2}=$ the sum of all of the numbers in column $6=3.30$
(8) Degrees of freedom (df) $=\mathrm{n}-1=7$
(9) P-value and conclusion about your hypothesis: $0.8<\mathrm{P}<0.9$

Table 9: Cross 9: Dihybrid between WT female and orange male

Step 3 Analysis

	-	-
RFP	R/-	R/-
-	$-/-$	$-/-$

Red : $1 / 2$
Not Red : 1/2

	-	-
YFP	Y/-	Y/-
-	$-/-$	$-/-$

Yellow 1/2
Not yellow 1/2
Red: $1 / 2 * 1 / 2=1 / 4$
*14 =3.5
Orange : $1 / 2 * 1 / 2=1 / 4$
*14 =3.5
Yellow $1 / 2 * 1 / 2=1 / 4$

* $14=3.5$

Grey: $1 / 2 * 1 / 2=1 / 4$

* $14=3.5$

Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed Number, o	Expected Number, e	$\mathrm{d}=(\mathrm{o}-\mathrm{e})$	d^{2}	$\mathrm{~d}^{2} / \mathrm{e}$
Grey	1	4	-3	9	2.25
Yellow	5	4	1	1	0.25
Red	5	4	1	1	0.25
Orange	3	4	-1	1	0.25
					3.00
Total	14	14			

(7) $\mathrm{X}^{2}=$ the sum of all of the numbers in column $6=3.00$
(8) Degrees of freedom (df) $=\mathrm{n}-1=3$

Conclusion:

(9) P-value and conclusion about your hypothesis: $0.3<\mathrm{P}<0.4$

Table 10: Cross 10: Tetrahybrid between short finned, purple male and long finned, yellow female

	-	-
PFP	P/-	P/-
-	$-/-$	$-/-$

Purple: 1/2
Not purple: 1/2

	-	-
YFP	YFP/-	YFP/-
YFP	YFP/-	YFP/-

Yellow 1

	Long	Short
Short	S/L	S/S
Short	S/L	S/S

Long 1/2
Short 1/2

	Stripe	Spot
Spot	$\mathrm{Sp} / \mathrm{St}$	$\mathrm{Sp} / \mathrm{Sp}$
Spot	$\mathrm{Sp} / \mathrm{St}$	$\mathrm{Sp} / \mathrm{Sp}$

Purple yellow, long fin, stripe
Purple yellow, long fin, spot
Purple yellow, short fin, stripe
Purple yellow, short fin, spot
Yellow, long fin, stripe
Yellow, long fin, spot
Yellow, short fin, stripe
Yellow, short fin, spot
Stripe 1/2
Spot 1/2

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed Number, o	Expected Number, e	$\mathrm{d}=(\mathrm{o}-\mathrm{e})$	d^{2}	$\mathrm{~d}^{2} / \mathrm{e}$
Purple yellow, long fin, stripe	0	1	1	1	1
Purple yellow, long fin, spot	1	1	0	0	0
Purple yellow, short fin, stripe	0	1	-1	1	1
Purple yellow, short fin, spot	0	1	-1	1	1
Yellow, long fin, stripe	0	1	-1	1	1
Yellow, long fin, spot	0	1	-1	1	1
Yellow, short fin, stripe	2	1	1	1	1
Yellow, short fin, spot	1	1	0	0	0
Total	4				6

(7) $\mathrm{X}^{2}=$ the sum of all of the numbers in column $6=6$
(8) Degrees of freedom (df) $=n-1=7$
(9) P-value and conclusion about your hypothesis: $0.5<\mathrm{P}<0.6$

Table 11: Cross 11: Dihybrid between orange male and orange female

	RFP	-
RFP	R/R	R/-
-	R/-	$-/-$

Red : 3/4
Not red : 1/4

	YFP	-
YFP	Y/Y	Y/-
-	Y/-	$-/-$

Yellow 3/4
Not yellow 1/4
Red/ Yellow $\quad: 3 / 4 * 3 / 4 * 19=10.688$
Red/not yellow $: 3 / 4 * 1 / 4 * 19=3.5625$
Not red/ yellow : $1 / 4 * 3 / 4 * 19=3.5625$
Not red/ not yellow : $1 / 4 * 1 / 4 * 19=1.1875$
Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed Number, o	Expected Number, e	$\mathrm{d}=(\mathrm{o}-\mathrm{e})$	d^{2}	$\mathrm{~d}^{2} / \mathrm{e}$
Orange	6	11	-5	25	2.27
Yellow	5	4	1	1	0.25
Grey	4	1	3	9	9.00
Red	4	4	0	0	0
Total	19				11.52

(7) $\mathrm{X}^{2}=$ the sum of all of the numbers in column $6=11.52$
(8) Degrees of freedom (df) $=n-1=3$

Conclusion:

(9) P-value and conclusion about your hypothesis: $\mathrm{P}<0.01$

Table 12: Cross 12: Trihybrid between purple male and purple female

	RFP	-
RFP	RFP/RFP	RFP/-
-	RFP/-	$-/-$

Red: 3/4
Not Red: 1/4

	BFP	-
BFP	BFP/BFP	BFP/-
-	BFP/-	$-/-$

Blue: 3/4
Not blue: 1/4

	gol	+
gol	$\mathrm{gol} / \mathrm{gol}$	$\mathrm{gol} /+$
+	$\mathrm{gol} /+$	$\mathrm{gol} /+$

Red blue, no pigment
Red blue, pigment
Red not blue, no pigment
Red not blue, pigment
Pigment: 3/4
No pigment: 1/4

Not red blue, no pigment
Not red blue, pigment
Not red not blue, no pigment
Not red not blue, pigment

$$
\begin{aligned}
& 3 / 4 * 3 / 4 * 1 / 4 * 15=2.109 \\
& 3 / 4 * 3 / 4 * 3 / 4 * 15=6.328 \\
& 3 / 4 * 1 / 4 * 1 / 4 * 15=0.703 \\
& 3 / 4 * 1 / 4 * 3 / 4 * 15=2.109
\end{aligned}
$$

$1 / 4 * 3 / 4 * 1 / 4 * 15=0.703$
$1 / 4 * 3 / 4 * 3 / 4 * 15=2.109$
$1 / 4 * 1 / 4 * 1 / 4 * 15=0.0156$
$1 / 4 * 1 / 4 * 3 / 4 * 15=0.703$

Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed Number, o	Expected Number, e	$\mathrm{d}=(\mathrm{o}-\mathrm{e})$	d^{2}	$\mathrm{~d}^{2} / \mathrm{e}$
Purple, pigment	4	6	-2	4	0.66
Grey, pigment	1	1	0	0	0
Blue, pigment	3	2	1	1	0.50
Red, pigment	6	2	4	16	8
Purple, no pigment	1	2	-1	1	0.50
Grey, no pigment	0	0	0	0	0
Blue, no pigment	0	1	-1	1	1
Red, no pigment	0	1	-1	1	1
Total	15				11.66

(7) $\mathrm{X}^{2}=$ the sum of all of the numbers in column $6=11.66$
(8) Degrees of freedom (df) $=\mathrm{n}-1=7$
(9) P-value and conclusion about your hypothesis: $0.1<\mathrm{P}<0.15$

Table 13: Cross 13: Trihybrid between red male and yellow female

	-	-
RFP	RFP/-	RFP/-
RFP	RFP/-	RFP/-

	-	-
YFP	YFP/-	YFP/-
YFP	YFP/-	YFP/low: 1

	gol	gol
+	$\mathrm{gol} / \mathrm{+}$	$\mathrm{gol} / \mathrm{+}$
+	$\mathrm{gol} / \mathrm{+}$	$\mathrm{gol} / \mathrm{+}$

Orange, pigment 1* $1 * 1 * 6=6$

Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed Number, o	Expected Number, e	$\mathrm{d}=(\mathrm{o}-\mathrm{e})$	d^{2}	$\mathrm{~d}^{2} / \mathrm{e}$
Orange, striped	6	6			
Total	6	6			

(7) $\mathrm{X}^{2}=$ the sum of all of the numbers in column $6=$
(8) Degrees of freedom (df) $=\mathrm{n}-1=0$

Conclusion:

(9) P-value and conclusion about your hypothesis:

Cannot carry out Chi square analysis with 0 degrees of freedom

Table 14: Cross 14: Trihybrid between Green, no pigment male and purple, striped male

	-	-
GFP	GFP/-	GFP/-
-	$-/-$	$-/-$

Green : 1/2
Not green: 1/2

	PFP	-
-	PFP/-	$-/-$
-	PFP/-	$-/-$

Purple: 1/2
Not purple: 1/2

	gol	gol
+	$\mathrm{gol} /+$	$\mathrm{gol} /+$
+	$\mathrm{gol} / \mathrm{+}$	$\mathrm{gol} /+$

Pigment: 1

Green-purple
Green, not purple
Purple, not green
Note green, not purple
$1 / 2 * 1 / 2 * 1 * 12=3$
$1 / 2 * 1 / 2 * 1 * 12=3$
$1 / 2 * 1 / 2 * 1 * 12=3$
$1 / 2 * 1 / 2 * 1 * 12=3$

Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed Number, o	Expected Number, e	$\mathrm{d}=(\mathrm{o}-\mathrm{e})$	d^{2}	$\mathrm{~d}^{2} / \mathrm{e}$
Green-purple	5	3	2	4	1.33
Green	4	3	1	1	0.33
Purple	2	3	-1	1	0.33
Grey	1	3	-2	4	1.33
Total					3.32

(7) $\mathrm{X}^{2}=$ the sum of all of the numbers in column $6=3.32$
(8) Degrees of freedom (df) $=n-1=3$

Conclusion:

(9) P-value and conclusion about your hypothesis: $0.3<\mathrm{P}<0.4$

Table 15: Cross 15: Monohybrid between WT female and red male

	-	-
RFP	R/-	R/-
-	$-/-$	$-/-$

Red: $\quad 1 / 2 * 12=6$
Not Red: $1 / 2 * 12=6$

Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed Number, o	Expected Number, e	$\mathrm{d}=(\mathrm{o}-\mathrm{e})$	d^{2}	$\mathrm{~d}^{2} / \mathrm{e}$
Red	4	6	-2	4	0.66
Grey	8	6	2	4	0.66
					1.32
Total	12	12			

(7) $\mathrm{X}^{2}=$ the sum of all of the numbers in column $6=1.32$
(8) Degrees of freedom (df) $=\mathrm{n}-1=1$

Conclusion:

(9) P-value and conclusion about your hypothesis: $0.2<\mathrm{P}<0.3$

Chi squared																									p value
Degrees of freedion (di)																									
25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
11.52	10.86	10.20	9.54	8.90	8.26	7.63	7.01	6.41	5.81	5.23	4.66	4.11	3.57	3.05	2.56	2.09	1.65	1.24	0.87	0.55	0.30	0.11	0.02	0.00	. 99
16.47	15.66	14.85	14.04	13.24	12.44	11.65	10.86	10.09	9.31	8.55	7.79	7.04	6.30	5.58	4.87	4.17	3.49	2.83	2.20	1.61	1.06	0.58	0.21	0.02	. 90
18.94	18.06	17.19	16.31	15.44	14.58	13.72	12.86	12.00	11.15	10.31	9.47	8.63	7.81	6.99	6.18	5.38	4.59	3.82	3.07	2.34	1.65	1.01	0.45	0.06	. 80
20.87	19.94	19.02	18.10	17.18	16.27	15.35	14.44	13.53	12.62	11.72	10.82	9.93	9.03	8.15	7.27	6.39	5.53	4.67	3.83	3.00	2.19	1.42	0.71	0.15	. 70
22.62	21.65	20.69	19.73	18.77	17.81	16.85	15.89	14.94	13.98	13.03	12.08	11.13	10.18	9.24	8.30	7.36	6.42	5.49	4.57	3.66	2.75	1.87	1.02	0.27	60
24.34	23.34	22.34	21.34	20.34	19.34	18.34	17.34	16.34	15.34	14.34	13.34	12.34	11.34	10.34	9.34	8.34	7.34	6.35	5.35	4.35	3.36	2.37	1.39	0.45	50
26.14	25.11	24.07	23.03	21.99	20.95	19.91	18.87	17.82	16.78	15.73	14.69	13.64	12.58	11.53	10.47	9.41	8.35	7.28	6.21	5.13	4.04	2.95	1.83	0.71	. 40
28.17	27.10	26.02	24.94	23.86	22.77	21.69	20.60	19.51	18.42	17.32	16.22	15.12	14.01	12.90	11.78	10.66	9.52	8.38	7.23	6.06	4.88	3.66	2.41	1.07	. 30
30.68	29.55	28.43	27.30	26.17	25.04	23.90	22.76	21.61	20.47	19.31	18.15	16.98	15.81	14.63	13.44	12.24	11.03	9.80	8.56	7.29	5.99	4.64	3.22	1.64	20
32.28	31.13	29.98	28.82	27.66	26.50	25.33	24.16	22.98	21.79	20.60	19.41	18.20	16.99	15.77	14.53	13.29	12.03	10.75	9.45	8.12	6.74	5.32	3.79	2.07	. 15
34.38	33.20	32.01	30.81	29.62	28.41	27.20	25.99	24.77	23.54	22.31	21.06	19.81	18.55	17.28	15.99	14.68	13.36	12.02	10.64	9.24	7.78	6.25	4.61	2.71	. 10
34.90	33.71	32.51	31.31	30.10	28.89	27.67	26.45	25.21	23.98	22.73	21.48	20.21	18.94	17.65	16.35	15.03	13.70	12.34	10.95	9.52	8.04	6.49	4.82	2.87	. 09
35.47	34.27	33.06	31.85	30.63	29.41	28.18	26.95	25.71	24.46	23.20	21.93	20.66	19.37	18.07	16.75	15.42	14.07	12.69	11.28	984	8.34	6.76	5.05	3.06	. 08
36.11	34.89	33.68	32.45	31.22	29.99	28.75	27.50	26.25	24.99	23.72	22.44	21.15	19.85	18.53	17.20	15.85	14.48	13.09	11.66	10.19	8.67	7.06	5.32	3.28	. 07
36.82	35.60	34.37	33.13	31.89	30.65	29.40	28.14	26.87	25.59	24.31	23.02	21.71	20.39	19.06	17.71	16.35	14.96	13.54	12.09	10.60	9.04	7.41	5.63	3.54	. 06
37.65	36.42	35.17	33.92	32.67	31.41	30.14	28.87	27.59	26.30	25.00	23.68	22.36	21.03	19.68	18.31	16.92	15.51	14.07	12.59	11.07	9.49	7.81	5.99	3.84	. 05
38.64	37.39	36.13	34.87	33.60	32.32	31.04	29.75	28.44	27.14	25.82	24.49	23.14	21.79	20.41	19.02	17.61	16.17	14.70	13.20	11.84	10.03	8.31	6.44	4.22	. 04
39.88	38.61	37.33	36.05	34.76	33.46	32.16	30.84	29.52	28.19	26.85	25.49	24.12	22.74	21.34	19.92	18.48	17.01	15.51	13.97	12.37	10.71	8.95	7.01	4.71	. 03
41.57	40.27	38.97	37.66	36.34	35.02	33.69	32.35	31.00	29.63	28.26	26.87	25.47	24.05	22.62	21.16	19.68	18.17	16.62	15.03	13.39	11.67	9.84	7.82	5.41	. 02
44.31	42.98	41.64	40.29	38.93	37.57	36.19	34.81	33.41	32.00	30.58	29.14	27.69	26.22	24.73	23.21	21.67	20.09	18.48	16.81	15.09	13.28	11.34	9.21	6.63	. 01
52.62	51.18	49.73	48.27	46.80	45.31	43.82	42.31	40.79	39.25	37.70	36.12	34.53	32.91	31.26	29.59	27.88	26.12	24.32	22.46	20.51	18.47	16.27	13.82	10.83	. 001
Note . Problems with di> 25 would rarely be worked by hand.																									

From: http://www.algebra.com/algebra/homework/Probability-and-statistics/Probability-andstatistics.faq.question.384379.html

